Audio Signal Processing : VII. Time-frequency analysis

Emmanuel Bacry

bacry@ceremade.dauphine.fr
http://www.cmap.polytechnique.fr/~bacry

Definition:

$$G(t,\omega) = \int s(u)g(u-t)e^{-i\omega u}du$$

where

- s(t): is the audio signal
- g(t): is the window (localized, symetric, real function)

What shape for the window?

m g should be smooth enough not to introduce spurious high frequency (more to come later)

VII.2 time-frequency atoms

$$G(t,\omega) = \int s(u)g(u-t)e^{-i\omega u}du$$

It can be rewritten

$$G(t,\omega) = \langle s, g_{\omega,t} \rangle$$

with

$$g_{\omega,t}(u) = g(u-t)e^{i\omega u}$$

 $g_{\omega,t} \simeq$ time-frequency atoms \simeq "test" functions

- Localization in time
 - Centered at time t
 - support $\simeq \sigma_t = \Delta t$
- Localization in frequency $\hat{g}_{\omega,t}(\xi) = e^{-i\omega t}\hat{g}(\xi \omega)$
 - ullet Centered at frequency ω
 - support $\simeq \sigma_{\omega} = \Delta \omega$

Heisenberg inequality : $\Delta t \Delta \omega \geq C$

VII.2 time-frequency atoms

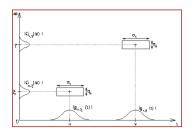
$$G(t,\omega) = \int s(u)g(u-t)e^{-i\omega u}du$$

It can be rewritten

$$G(t,\omega) = \langle s, g_{\omega,t} \rangle$$

with

$$g_{\omega,t}(u) = g(u-t)e^{i\omega u}$$

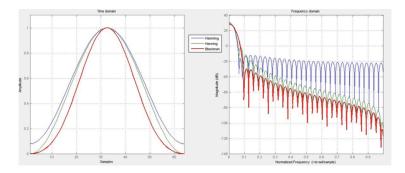


What shape for the window ?

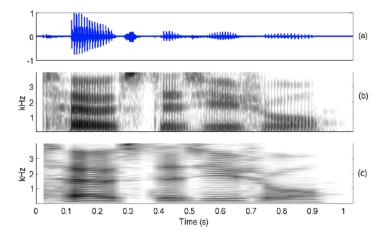
- Hanning : $\frac{1}{2} \frac{1}{2}\cos(2\pi x)$, $x \in [0, 1]$
- Hamming : $0.54 0.46 \cos(2\pi x)$, $x \in [0, 1]$
- Blackman : $0.42 0.5\cos(2\pi x) + 0.08\cos(4\pi x)$, $x \in [0, 1]$

Fenêtre	Lobe 2aire (dB)	Pente (dB/oct)	Bande passante (bins)	Perte au pire des cas (dB)
Rectangulaire	-13	-6	1,21	3,92
Triangulaire	-27	-12	1,78	3,07
Hann	-32	-18	2,00	3,18
Hamming	-43	-6	1,81	3,10
Blackman-Harris 3	-67	-6	1,81	3,45

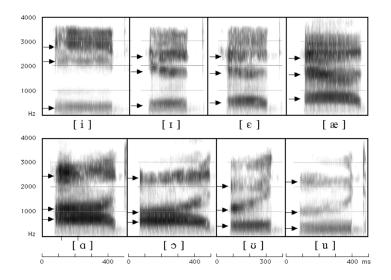
What shape for the window?



Example of Spectrograms: narrow versus wide-band

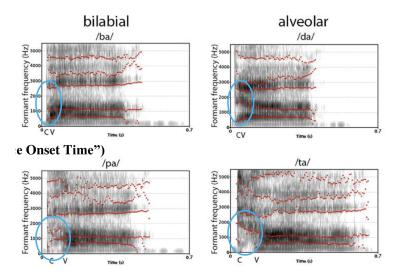


Example of Spectrograms: vowels

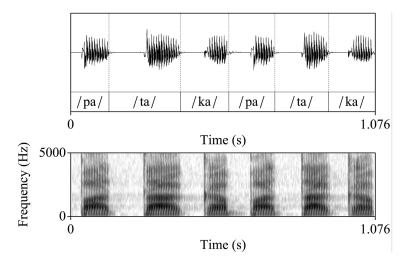


E.Bacry

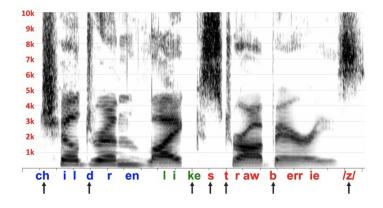
Example of Spectrograms: plosives



Example of Spectrograms : more plosives



Example of Spectrograms : sentence



Definition

$$G(t,\omega) = \int s(u)g(u-t)e^{-i\omega u}du$$

One gets

$$G(t,\omega)e^{i\omega t}=s\star g_{\omega}(t)$$

where
$$g_{\omega}(t)=g(t)e^{i\omega t}$$
, $\hat{g}_{\omega}(\xi)=\hat{g}(\xi-\omega)$

E.Bacrv

VII.3 The windowed Fourier transform : (Continuous time) Reconstruction formula

Since
$$G(t,\omega)=< s, g_{\omega,t}>$$
, with $g_{\omega,t}(u)=g(u-t)e^{i\omega u}$

We could expect a reconstruction formula like

$$s(t) = C \int d\omega \int du \ G(t,\omega)g_{\omega,t}$$
 ?

Actually one can use a reconstruction window h different from the analysis window g

$$s(t) = C \int d\omega \int du \ G(t,\omega) h_{\omega,t}$$

where

$$C = \frac{1}{2\pi < h, g >}$$

Definition

$$G(t,\omega) = \int s(u)g(u-t)e^{-i\omega u}du$$

One has

$$||s||^2 = \frac{1}{2\pi ||g||^2} \int du \int d\omega |G(u,\omega)|^2$$

Analysis

ullet Time discretization (Shannon) of the signal $s[n] = s(n\Delta t)$

$$G(\omega, n\Delta t) = \sum s[m]g[m-n]e^{-i\omega m\Delta t}$$

- g has a support of size N (so does s[.]g[.-n])
- A natural sampling for ω is given by Discrete Fourier Transform : $\Delta \omega = \frac{2\pi}{N\Delta t}$

$$G[k,n] = G(k\Delta\omega, n\Delta t) = \sum_{m=0}^{N-1} s[m]g[m-n]e^{-\frac{2i\pi km}{N}}, \quad n \in [0, N[, k \in [0, N]])$$

Any hint about increasing the sampling precision of ω (i.e., decreasing $\Delta\omega$)?

Reconstruction

- ullet We subsample in time $\{G(k,n)\}_{k,n} o \{G(k,pR)\}_{k,p}$
- For each time pR we inverse Fourier transform, so we get $\{s[n]g[n-pR]\}$ (which has a support of size N).
- We use a reconstruction window h[n] such that

$$\sum_{p} g[n - pR]h[n - pR] = 1$$

• we thus get

$$\sum_{p} s[n]g[n-pR]h[n-pR] = s[n]$$

Framework

$$s(t) = a(t)\cos(\phi(t))$$

where

- a(t): slowly varying (compared to $\phi(t)$)
- \bullet $\phi'(t)$: instantaneous frequency
- $\phi'(t)$: slowly varying (compared to $\phi(t)$)

Theorem

$$s(t) = a(t)\cos(\phi(t)), \quad \Delta a(t) << \Delta \phi(t), \quad \Delta \phi'(t) << \Delta \phi(t)$$

If $\hat{g}(\omega)$ has a support $]-\frac{\Delta\Omega}{2},\frac{\Delta\Omega}{2}[$ and if $\phi'(t)>\frac{\Delta\Omega}{2}$ then the function

$$\omega \longrightarrow |G(t,\omega)|$$

has a maximum at $\omega = \phi'(t)$